Partial Convergence and Continuity of Lattice-Valued Possibilistic Measures
نویسنده
چکیده
The notion of continuity from above (upper continuity) for lattice-valued possibilistic measures as investigated in [7] has been proved to be a rather strong condition when imposed as demand on such a measure. Hence, our aim will be to introduce some versions of this upper continuity weakened in the sense that the conditions imposed in [7] to the whole definition domain of the possibilistic measure in question will be restricted just to certain subdomains. The resulting notion of partial upper convergence and continuity of lattice-valued possibilistic measures will be analyzed in more detail and some results will be introduced and proved.
منابع مشابه
Generalizations and Extensions of Lattice-Valued Possibilistic Measures, Part II
In this technical report, the systematic investigation of lattice-valued possibilistic measures, opened in the first part of this report (cf. Technical Report No. 952, ICS AS CR, December 2005) is pursued and focused towards possibilistic variants of the notions of outer (upper) and lower (inner) possibilistic measures induced by a given partial possibilistic measure. The notion of Lebesgue mea...
متن کاملA COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملCONNECTING T AND LATTICE-VALUED CONVERGENCES
$top$-filters can be used to define $top$-convergence spaces in the lattice-valued context. Connections between $top$-convergence spaces and lattice-valued convergence spaces are given. Regularity of a $top$-convergence space has recently been defined and studied by Fang and Yue. An equivalent characterization is given in the present work in terms of convergence of closures of $top$-filters. M...
متن کاملCONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES
We show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. Further we study the preservation of diagonal conditions, which characterize approach spaces. It is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 27 شماره
صفحات -
تاریخ انتشار 2008